Turn Any Website Into a Data Pipeline

The web data extraction CLI built for engineers. Point at any web resource. Get structured data back. Our AI agent builds the YAML data pipeline — you just describe what you need. Local storage. Zero token waste. Production-ready.

$ pip install anysite-cli
▶ AI Data Agent
📦 Local-first storage
⚡ YAML pipelines
🌐 Any website, any platform

The Entire Web Is Your Database. The Agent Is Your Data Engineer.

Every website has structured data inside it. Anysite's AI extracts it — from any URL, any platform, any page. The CLI gives you a production runtime to build data pipelines against any web resource. And the Data Agent lets you skip the manual work entirely: describe what data you need in plain English, and the agent discovers endpoints, builds the YAML pipeline, estimates costs, and executes.

You're not choosing from a catalog. You're pointing at the web and getting data back.

You: "I need decision makers at Series B SaaS companies and their recent LinkedIn activity"

Agent:
  Discovers endpoints Builds pipeline YAML Estimates 2,400 credits
   Collects companies Maps to employees Fetches posts
   Stores in Parquet Ready to query

Why Traditional Web Scraping Alternatives Fall Short

Every existing method for web data extraction has the same problem: they weren't built for production data pipelines.

Browser Automation

CSS selectors break on layout changes. Slow execution. Requires headless browsers and constant debugging.

Workflow Tools

n8n, Zapier, Make — every data transformation passes through LLM context. 10,000 records means millions of tokens.

Custom Scrapers

Weeks of development. Immediate maintenance burden. No standardized output. Every site needs unique logic.

API Aggregators

Fixed catalogs of endpoints. If the source you need isn't listed, you're stuck. No pipeline capabilities.

Anysite CLI: the modern web scraping alternative built for data pipelines.

One Data Pipeline CLI. Seven Capabilities. Any Web Source.

1

Single API Calls

Instant requests with flexible output formats (JSON, CSV, JSONL, table) and field filtering. Dot-notation for nested data. Built-in presets.

anysite api /api/linkedin/user user=satyanadella --fields "name,headline,experience.title"
anysite api /api/instagram/user user=natgeo --format table
anysite api /api/twitter/user user=elonmusk --preset minimal
2

Batch Processing

Process thousands of inputs in parallel. Three error strategies: stop, skip, retry with backoff.

anysite api /api/linkedin/user \
  --from-file users.txt --input-key user \
  --parallel 5 --on-error skip --progress
3

Dataset Pipelines

Declarative YAML workflows with chained dependencies and scheduling. Six pre-built templates.

anysite dataset init prospect-pipeline
anysite dataset collect pipeline.yaml --dry-run
anysite dataset collect pipeline.yaml --incremental
4

Database Integration

Load into SQLite or PostgreSQL with auto-schema and diff-sync. Upsert with conflict handling.

anysite api /api/linkedin/user user=satyanadella \
  | anysite db insert mydb --table profiles
anysite db upsert mydb --table leads --conflict-key email
5

LLM Analysis

Classify, summarize, enrich, deduplicate using OpenAI or Anthropic. Four enrichment types. Built-in SQLite cache.

anysite llm classify dataset.yaml --source posts \
  --categories "positive,negative,neutral"
anysite llm enrich dataset.yaml --source companies \
  --extract "industry_category,funding_stage"
anysite llm dedupe dataset.yaml --source leads \
  --threshold 0.85
6

SQL Querying

DuckDB SQL on collected datasets. Run analytics without external databases.

anysite dataset query pipeline.yaml \
  --sql "SELECT * FROM employees
         WHERE title LIKE '%CTO%'"

Describe It or Define It. Collect. Store. Query.

Two paths to the same result: let the Data Agent build your pipeline from natural language, or write the YAML yourself for full control.

1

Define Pipeline

YAML config or natural language via Agent

2

Preview & Collect

Dry-run to estimate, then execute

3

Store Locally

Parquet, DuckDB, PostgreSQL, SQLite

4

Query & Analyze

SQL queries + LLM classification

name: prospect-pipeline
sources:
  target_companies:
    endpoint: /api/linkedin/search/companies
    input:
      industry: "SaaS"
      employee_count: "51-200"
    parallel: 3

  decision_makers:
    endpoint: /api/linkedin/company/employees
    depends_on: target_companies
    input:
      company: ${target_companies.urn}
      keywords: "VP Sales, Director Sales"
      count: 5
    on_error: skip

  recent_posts:
    endpoint: /api/linkedin/user/posts
    depends_on: decision_makers
    input:
      urn: ${decision_makers.internal_id.value}
      count: 5

storage:
  format: parquet
  path: ./data/prospects
# Preview costs before running
anysite dataset collect pipeline.yaml --dry-run

# Execute the full pipeline
anysite dataset collect pipeline.yaml

# Run incremental updates
anysite dataset collect pipeline.yaml --incremental

# Query results with SQL
anysite dataset query pipeline.yaml \
  --sql "SELECT * FROM decision_makers WHERE title LIKE '%CTO%'"

# Classify posts with LLM
anysite llm classify pipeline.yaml --source recent_posts \
  --categories "product_update,hiring,thought_leadership"

Any Website Is an Endpoint. Major Platforms Are Ready Out of the Box.

The Anysite engine turns any web page into structured data via AI parsing. Major platforms come with dedicated, optimized endpoints.

Platform What You Get Example
LinkedIn Profiles, companies, posts, jobs, search, messaging, employees anysite api /api/linkedin/user user=satyanadella
Twitter/X Posts, threads, users, search, followers anysite api /api/twitter/user user=elonmusk
Instagram Posts, reels, profiles, comments, likes anysite api /api/instagram/user user=natgeo
Reddit Discussions, subreddits, comments, user history anysite api /api/reddit/search/posts query="AI agents"
YouTube Videos, channels, comments, subtitles anysite api /api/youtube/video video_id=dQw4w9WgXcQ
SEC EDGAR 10-K, 10-Q, 8-K filings anysite api /api/sec/search/companies
Y Combinator Companies, founders, batch data anysite api /api/yc/search/companies
Google Search, Maps, News anysite api /api/search/google
Capability What It Does Example
Web Parser Any URL to structured JSON anysite api /api/webparser/parse url="https://..."
AI Parsers Specialized extraction for GitHub, Amazon, Glassdoor, G2, Trustpilot, Crunchbase, Pinterest, AngelList anysite api /api/ai-parser/glassdoor url="..."
Data Agent Describe a data need — agent discovers or creates the right endpoint "Get pricing data from competitor websites"

The endpoint library grows continuously. But you're never limited to it — the AI parser and Data Agent can extract structured data from any web resource.

Explore Available Endpoints

# Browse all ready-made endpoints
anysite describe

# Filter by platform
anysite describe --search linkedin

# Get parameter details for a specific endpoint
anysite describe /api/linkedin/user

Built for Real Workflows

From lead gen to research, the CLI handles production-grade data collection.

Sales Intelligence

Define target criteria once. Pipeline refreshes on schedule via cron. Always-fresh prospect data flowing into your CRM.

Competitive Intelligence

Multi-source collection with anysite dataset diff for change detection across competitor websites.

Research at Scale

Batch processing 10K+ records with parallel execution and incremental tracking. Academic and market research workflows.

Brand Monitoring

Scheduled pipeline with LLM sentiment classification and webhook alerts. Know what's being said, automatically.

Prefer AI-native access? Try the MCP Server for Claude & Cursor. Need direct HTTP calls? Use the REST API. Compare all plans →

Your Data Stays Local. Your Tokens Stay Unburned.

Unlike workflow tools that pass every record through LLM context, Anysite CLI processes data locally. Only config enters the context window.

Approach 1,000 Records 10,000 Records 100,000 Records
Workflow Tool (context-based) ~500K tokens ~5M tokens ~50M tokens
Anysite CLI ~1K tokens ~1K tokens ~1K tokens
Efficiency gain 500x 5,000x 50,000x
Context window: [pipeline.yaml config] ← only this enters context
Local execution: collect → store → query ← all outside context
LLM analysis: [classify/summarize] ← only when requested

Technical Specifications

Output Formats

JSON (default), JSONL, CSV, Rich table

Field Control

--fields, --exclude, --preset (minimal, contact, recruiting)

Error Handling

stop (default), skip, retry with backoff

LLM Support

OpenAI + Anthropic, 6 operations, SQLite response cache

Scheduling

Cron, systemd, webhooks

Install Extras

[data], [postgres], [llm], [all]

Unix Piping

# Pipe API output directly into database
anysite api /api/linkedin/user user=satyanadella | anysite db insert mydb --table profiles

# Pipe into jq for quick extraction
anysite api /api/linkedin/company company=anthropic | jq '.employees[] | .title'

Simple Credit-Based Pricing

Start free. Scale as you grow. No rate limits on any plan.

Free Trial
$0/mo
1,000 credits/mo
 
Get Started
Tier 1
$49/mo
15,000 credits/mo
$0.98 / 1K credits
Get Plan
Tier 3
$349/mo
435,000 credits/mo
$0.80 / 1K credits
Get Plan
Tier 4
$649/mo
925,000 credits/mo
$0.70 / 1K credits
Get Plan
Tier 5
$999/mo
1,500,000 credits/mo
$0.65 / 1K credits
Get Plan

PAYG top-ups from $20 (~15K credits). MCP Server also available at $30/mo unlimited.

Get Running in 5 Minutes

1. Install the CLI

pip install anysite-cli

2. Configure your API key

anysite config set api_key YOUR_API_KEY

3. Update the schema

anysite schema update

4. Make your first request

anysite api /api/linkedin/user user=satyanadella

5. Create your first pipeline

anysite dataset init my-first-pipeline
anysite dataset collect my-first-pipeline/dataset.yaml --dry-run

Resources

Trusted by Data Teams

500+
Developers in beta
2.5M+
API calls processed
50+
Production pipelines daily
"Replaced 3 weeks of scraper code with one YAML file."
— Data Engineer, B2B SaaS
"Finally stopped burning tokens on data shuffling."
— AI Engineer, ML Startup
"The pipeline just runs. Haven't touched it in 2 months."
— Growth Lead, Series A

Turn Any Website Into Your Next Dataset

1,000 free credits. No credit card required. Every web resource is a potential data source — the agent handles the rest.

$ pip install anysite-cli
Get Free API Key Read the Docs